فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


نویسندگان: 

Hosseini Pozveh Maryam

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    9
  • شماره: 

    2
  • صفحات: 

    23-38
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    29
  • دانلود: 

    0
چکیده: 

Influence Maximization in social networks is defined as determining a subset of seed nodes where triggering the Influence diffusion through the social network leads to the maximum number of final Influenced nodes. The tradeoff between the runtime efficiency and effectiveness in the quality of response is the main issue in presenting solutions for this NP-hard optimization problem. Centrality-based methods are applied as a category of efficient heuristic-based solutions to this problem. The two leading causes of losing effectiveness in centrality-based methods are 1) only the link structure and non-awareness of Influence diffusion are considered in determining the importance of nodes, and 2) Influence overlap exists among selected seed nodes. To address the first cause, an Influence-aware betweenness centrality measure is proposed considering both IC and LT models. Moreover, an existing Influence-aware closeness centrality measure for LT model is adopted to cover both LT and IC models. To address the second cause, a greedy-based method is proposed by applying Influence-aware centrality measures to identify the influential nodes, next to proposing a Jacquard-based measure to overcome the Influence overlap problem. The experiments consist of two parts where two real-world datasets are applied: 1) the proposed Influence-aware centrality measures are compared with their original versions, and 2) the greedy-based method is compared with benchmark methods. The results indicate the effectiveness of the Influence-aware centrality measures and the proposed greedy-based method in maximizing the Influence spread in social networks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    30
  • دانلود: 

    0
چکیده: 

In social networks groups play a crucial role and making decisions based on majority consensus. Which Influencer nodes should we select if our goal is to broadcast a subject in a target group and increase the number of active nodes in this group? Here, we study a new Influence Maximization (IM) problem that focuses on individuals in a target group who are activated by some relevant topic or information. Target Group Influence Maximization (TGIM) aims to select k Influencer nodes in such a way that the number of activated nodes in the target group is maximized. In this paper, we study TGIM and focus on activating the majority of nodes in the target group. We propose an algorithm named Reinforcement Learning for Target Group (RLTG) based on the analysis of the Influence of nodes on the target group. The algorithm uses the reinforcement learning approach to learn the optimal path from each target node to some candidate Influencers. The experimental results indicate that the recommended approach outperforms known methods.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 30

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

Amiri Babak | FATHIAN MOHAMMAD | Asaadi Elnaz

اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    13
  • شماره: 

    3
  • صفحات: 

    16-40
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    119
  • دانلود: 

    0
چکیده: 

Many real-world networks, including biological networks, internet, information and social networks can be modeled by a complex network consisting of a large number of elements connected to each other. One of the important issues in complex networks is the evaluation of node importance because of its wide usage and great theoretical significance, such as in information diffusion, control of disease spreading, viral marketing and rumor dynamics. A fundamental issue is to identify a set of most influential individuals who would maximize the Influence spread of the network. In this paper, we propose a novel algorithm for identifying influential nodes in complex networks with community structure without having to determine the number of seed nodes based on genetic algorithm. The proposed algorithm can identify influential nodes with three methods at each stage (degree centrality, random and structural hole) in each community and measure the spread of Influence again at each stage. This process continues until the end of the genetic algorithm, and at the last stage, the most influential nodes are identified with maximum diffusion in each community. Our community-based Influencers detection approach enables us to find more influential nodes than those suggested by page-rank and other centrality measures. Furthermore, the proposed algorithm does not require determining the number of k initial active nodes.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 119

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
تعامل: 
  • بازدید: 

    41
  • دانلود: 

    0
چکیده: 

Nowadays, much attention has been devoted to the issues of social networks and social Influence. Social Influence examines the user's behavioral changes under the Influence of their neighbors. The issue of Influence Maximization is to find a subset of influential nodes that can maximize propagation in the network. The selection of people is very important and is the major aim of the studies. Hence, the current study aims to investigate the Maximization of Influence in signed social networks since in the psychology of society, negative opinions are superior to positive ones. The criteria considered for measuring Influence and methods to increase it by identifying influential people are examined. The proposed solution of this paper is based on the label propagation algorithm. The algorithms used for maximizing Influence in signed social networks namely a greedy algorithm and an innovative algorithm are outlined in the second section. To implement the algorithms and simulate the transfer of users' opinions in the graph network, the independent cascade propagation model is used. The proposed algorithm shows better performance and results compared to other algorithms and has less computational overhead since it finds primary nodes by detecting dense parts and not randomly. The significant novelty of the paper lies in the heart of the accuracy and authenticity of the proposed model in maximizing Influence in signed social networks.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 41

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    1401
  • دوره: 

    10
  • شماره: 

    1
  • صفحات: 

    25-41
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    165
  • دانلود: 

    0
چکیده: 

متن کامل این مقاله به زبان انگلیسی می باشد. لطفا برای مشاهده متن کامل مقاله به بخش انگلیسی مراجعه فرمایید.لطفا برای مشاهده متن کامل این مقاله اینجا را کلیک کنید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 165

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    10
  • شماره: 

    2
  • صفحات: 

    57-69
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    251
  • دانلود: 

    99
چکیده: 

در دهه گذشته، مردم زمان زیادی را در شبکه های اجتماعی برای تعامل با دوستان و به اشتراک گذاری اطلاعات، افکار، اخبار و غیره صرف می کنند. این شبکه های اجتماعی بخش مهمی از زندگی روزمره ما را تشکیل می دهند. با بهره برداری از توسعه شبکه های اجتماعی، یافتن افراد تأثیرگذار در یک شبکه ی اجتماعی کاربردهای عملی زیادی در بازاریابی، سیاست و حتی کنترل بیماری ها دارد. در این مقاله، روش جدیدی با عنوان الگوریتم کرکس توسعه یافته پویا برای حل مسئله بیشینه سازی نفوذ ارائه کرده ایم. با توجه به این نکته که در دنیای واقعی، شبکه های اجتماعی ماهیت بسیار پویا و مقیاس پذیر دارند. در الگوریتم پیشنهادی ما دو معیار مهم که در کارهای انجام شده قبلی کمتر مورد توجه قرار گرفته است را در نظر می گیریم. یکی تغییر ساختار شبکه در طول زمان و دیگری مقیاس پذیری است. الگوریتم پیشنهادی روی مجموعه داده های استاندارد مورد ارزیابی قرارگرفته شده است. نتایج به دست آمده نشان می دهد که الگوریتم پیشنهادی به دلیل کاهش فضای جستجو و استفاده از چندین مکانیسم مختلف و متفاوت در مراحل اکتشاف و بهره وری و ایجاد تعادل و گذار بین این مراحل نسبت به دیگر الگوریتم های مورد مقایسه، مقیاس پذیرتر بوده و از دقت بالاتری در پیدا کردن رئوس بانفوذ در این شبکه ها را برخوردار است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 251

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 99 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2019
  • دوره: 

    5
تعامل: 
  • بازدید: 

    152
  • دانلود: 

    0
چکیده: 

POPULARITY OF ONLINE SOCIAL NETWORK SERVICES MAKES IT A SUITABLE PLATFORM FOR RAPID INFORMATION DIFFUSION RANGING FROM POSITIVE TO NEGATIVES INFORMATION. ALTHOUGH THE POSITIVE DIFFUSED INFORMATION MAY WELCOMED BY PEOPLE, THE NEGATIVE INFORMATION SUCH AS RUMOR, HATE AND MISINFORMATION CONTENT SHOULD BE BLOCKED. HOWEVER, BLOCKING INAPPROPRIATE, UNWANTED AND CONTAMINATION DIFFUSION ARE NOT TRIVIAL. IN PARTICULAR, IN THIS PAPER, WE STUDY THE NOTION OF COMPETING NEGATIVE AND POSITIVE CAMPAIGNS IN A SOCIAL NETWORK BY ADDRESSING THE Influence BLOCKING Maximization (IBM) PROBLEM TO MINIMIZE THE BAD EFFECT OF MISINFORMATION. IBM PROBLEM CAN BE DEFINED AS FINDING A SUBSET OF NODES TO PROMOTE THE POSITIVE Influence UNDER MULTICAMPAIGN INDEPENDENT CASCADE MODEL AS DIFFUSION MODEL TO MINIMIZE THE NUMBER OF NODES THAT ADOPT THE NEGATIVE Influence AT THE END OF BOTH PROPAGATION PROCESSES. IN THIS REGARD, WE PROPOSED A COMMUNITY BASED ALGORITHM CALLED FC_IBM ALGORITHM USING FUZZY CLUSTERING AND CENTRALITY MEASURES FOR FINDING A GOOD CANDIDATE SUBSET OF NODES FOR DIFFUSION OF POSITIVE INFORMATION IN ORDER TO MINIMIZING THE IBM PROBLEM. THE EXPERIMENTAL RESULTS ON WELL-KNOWN NETWORK DATASETS SHOWED THAT THE PROPOSED ALGORITHM NOT ONLY OUTPERFORMS THE BASELINE ALGORITHMS WITH RESPECT TO EFFICIENCY BUT ALSO WITH RESPECT TO THE FINAL NUMBER OF POSITIVE NODES.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 152

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    51
  • شماره: 

    3
  • صفحات: 

    359-370
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    28
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 28

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    7
تعامل: 
  • بازدید: 

    129
  • دانلود: 

    0
چکیده: 

In parallel with the development of online social networks, the number of active users in these media is increased, which mainly use these media as a tool to share their opinions and obtaining information. Propagation of Influence on social networks arises from a common social behavior called "mouth-to-mouth" diffusion among society members. The Influence Maximization (IM) problem aims to select a minimum set of users in a social network to maximize the spread of Influence. In this paper, we propose a method in order to solve the IM problem on social media that uses the network embedding concept to learn the feature vectors of nodes. In the first step of the proposed method, we extract a structural feature vector for each node by network embedding. Afterward, according to the similarity between the vectors, the seed set of influential nodes is selected in the second step. The investigation of the results obtained from applying the proposed method on the real datasets indicates its significant advantage against its alternatives. Specifically, the two properties of being submodular and monotonic in the proposed method, which lead to an optimal solution with the ratio of approximation, make this method considered a tool with high potential in order to address the IM problem.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 129

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    10
  • شماره: 

    1
  • صفحات: 

    61-74
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    39
  • دانلود: 

    0
چکیده: 

Influence Maximization is one of the most important topics in the social network analysis field. As all the social networks can be considered signed, explicitly or implicitly, assessing Influence Maximization in these networks is inevitable. Due to the NP-hard nature of this problem, the category of node-ranking-based solutions is of concern, where, the PageRank algorithm is outstanding. Original PageRank is merely defined based on the trust relationships and it is not applicable in signed social networks. Upon an agreement on the scheme of trust propagation, where trust propagates step by step in the social network, the two main schemes of distrust propagation are: a) distrust propagates step by step throughout the social network, and b) distrust propagates up to one step of the neighborhood. Despite the claims made by related researches that scheme (b) is the dominant behavior compared to (a),available PageRank algorithms are updated to incorporate scheme (a). In this study, a new PageRank-based method, which adopts scheme (b) to model the distrust-based Influence propagation in signed social networks, is proposed. Accordingly, the importance of each node is computed considering that every node propagates the received Influence from its trusted neighbors to other nodes, while it blocks the received Influence from its untrusted neighbors. Assessments run on the three real datasets reveal the superiority of this proposed method over other existing PageRank algorithms in maximizing Influence in signed social networks. The outperformance is between 22% to 46% considering all experimental settings in comparison with the most effective benchmark method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 39

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button